首页 > 高考资讯 > 正文

广东高职高考考什么?

2024-01-13 12:24:42 | 青源高校名单网

小编今天整理了一些广东高职高考考什么?相关内容,希望能够帮到大家。

本文目录一览:

广东高职高考考什么?

广东高职高考考什么?

2023年高职高考的同学们看过来,考试时间有变化啦!小华给大家带来了最新消息。原定于1月7日至8日举行的普通高等学校招收中等职业学校毕业生统一考试(简称“3+证书”考试)推迟到2月22日至23日进行;原定于1月4日举行的广东省中等职业技术教育专业技能课程考试推迟到2月24日进行。
请点击输入图片描述
以下考点请同学们牢记,加紧复习。
语文(150分):语言知识与应用(字音、字形、标点符号、成语、修改病句、修辞手法、语言表达连贯得体)、古代诗文阅读(文言文阅读、古代诗歌阅读、24篇必背古诗词)、现代文阅读(科学类作品阅读、文学作品阅读)、语言表达与应用(语言表达与应用、应用文、作文)。
请点击输入图片描述
数学(150分):集合与逻辑用语、不等式、函数、指数函数与对数函数、三角函数、数列、平面向量、平面解析几何、概率与统计初步。
请点击输入图片描述
英语(150分):补全对话、词汇知识、语法知识(构词法、名词、主谓一致、冠词、代词、数词、形容词、副词、动词、介词、连词、句子种类、句子成分、简单句的五种基本句型、复合句、倒装句、虚拟语气)、完形填空、阅读理解;、语法填空、完成句子、应用写作。
请点击输入图片描述
此外专业技能证书"指报考前需要考取(任选其一)广东省中等职业技术教育专业技能课程证书(16种)或全国计算机等级证书、全国英语等级证书。
请点击输入图片描述
按照往年数据,只需260分就可以达到本科录取线了。小华为大家整理了最新的本院院校名单,方便大家了解:嘉应学院、韶关学院、韩山师范学院、岭南师范学院、广东白云学院、广东科技学院、广东技术示范大学、广东工商职业技术大学。
请点击输入图片描述
小华介绍下东莞南华的热门专业,欢迎大家就读:电子商务、法律事务、服装设计、幼儿保育、艺术专业、汽车维修、工业机器人。
祝各位考生都能在本专业考到心仪的学校,前程似锦,不负韶华。

广东高职高考考什么?

2023年高考数学考点

2023年高考数学考点如下 :

数学考试通常包括数与式、函数与方程、几何、概率与统计四个板块,要求考生掌握数学的基本概念和运算能力。考点有:数学基本概念:不同板块的内容 具有一定的联系,各方面都要融汇贯通。

基本运算:要熟练掌握常用的运算方法,有意识地开展复习练习知识点的拓展能力。应用题:要具备解题的能力,对各种样式的应用型题目具有丰富的经验积累。

拓展:

1、语文通常包括阅读理解、作文和文学常识等多个板块,需要考生具备较为全面的语文素养。考点有:阅读理解:一定要理解文章的中心思想,掌握文章的结构和要点。

作文:要注意提高写作水平,增加修辞手法和语言表达能力。文学常识:作为语文的重要组成部分,考生需要熟练掌握中国古代文学、现代文学和外国文学的基本概念和知识。

2、英语考试通常包括听、说、读、写四个板块,需要考生掌握英语的基本语法和词汇,同时还需要具备一定的交际能力。考点有:语音语调:要注意语言的音准和语调、发音和语音。

词汇和语法:需要掌握足够的基础词汇和语法知识,以便理解大量的文本阅读材料。综合能力:需要考生具备一定的综合能力,能够在听、说、读、写四个方面全面掌握英语的基础知识,提高英语应用能力。

高考需要注意以下几点事项:

1、正确理解高考改革。要密切跟踪高考政策变化,理解高考考试方式与考点设置的新变化。特别要注意选修课和热点领域知识的考查要求。这有助于制定更加科学的复习计划。

2、选择适合的高考备考资料。要选择权威和适合考生水平的高考备考教材与资料。要根据高考考点设置选择重点复习的内容与课题。

3、制定科学的复习计划。要制定具体可行的日复习计划和总复习计划。重点安排考点与薄点的复习进度,确保知识面覆盖到位。计划要有针对性且兼顾天数充裕度。

4、采用科学的复习方法。要结合高考考试形式,采用题海练习、模拟练习等方法。只有大量实战练习,才能熟练掌握知识与技巧。

5、管理好心态。高考临近要注意调整好心态,保持积极乐观与镇定状态。避免过于焦虑与紧张,要相信自己已付出的努力并努力发挥正常水平。

6、严格考前准备。考试前一天要规范作息,早睡早起。带好所需文具,考前要再次确认考场位置与交通时间。做好最终的心理建设,在进入考场时做到心态平和。

广东高职高考考什么?

湖南高考数学知识点总结

考试是检测学生学习效果的重要手段和方法,考前需要做好各方面的知识储备。下面是我为大家整理的高考数学知识点,希望对大家有所帮助!

高考文科数学考点总结

第一,函式与导数。主要考查 *** 运算、函式的有关概念定义域、值域、解析式、函式的极限、连续、导数。

第二,平面向量与三角函式、三角变换及其应用。这一部分是高考微博的重点但不是难点,主要出一些基础题或中档题。

第三,数列及其应用。这部分是高考的重点而且是难点,主要出一些综合题。

第四,不等式。主要考查不等式的求解和证明,而且很少单独考查,主要是在解答题中比较大小。是高考的重点和难点。

第五,概率和统计。这部分和我们的生活联络比较大,属应用题。

第六,空间位置关系的定性与定量分析,主要是证明平行或垂直,求角和距离。

第七,解析几何。是高考的难点,运算量大,一般含引数。

湖南高考文科数学考点一:直线方程

1. 直线的倾斜角:一条直线向上的方向与轴正方向所成的最小正角叫做这条直线的倾斜角,其中直线与轴平行或重合时,其倾斜角为0,故直线倾斜角的范围是.

注:①当或时,直线垂直于轴,它的斜率不存在.

②每一条直线都存在惟一的倾斜角,除与轴垂直的直线不存在斜率外,其余每一条直线都有惟一的斜率,并且当直线的斜率一定时,其倾斜角也对应确定.

2. 直线方程的几种形式:点斜式、截距式、两点式、斜切式.

特别地,当直线经过两点,即直线在轴,轴上的截距分别为时,直线方程是:.

注:若是一直线的方程,则这条直线的方程是,但若则不是这条线.

附:直线系:对于直线的斜截式方程,当均为确定的数值时,它表示一条确定的直线,如果变化时,对应的直线也会变化.①当为定植,变化时,它们表示过定点0,的直线束.②当为定值,变化时,它们表示一组平行直线.

3. ⑴两条直线平行:

∥两条直线平行的条件是:①和是两条不重合的直线. ②在和的斜率都存在的前提下得到的. 因此,应特别注意,抽掉或忽视其中任一个“前提”都会导致结论的错误.

一般的结论是:对于两条直线,它们在轴上的纵截距是,则∥,且或的斜率均不存在,即是平行的必要不充分条件,且

推论:如果两条直线的倾斜角为则∥.

⑵两条直线垂直:

两条直线垂直的条件:①设两条直线和的斜率分别为和,则有这里的前提是的斜率都存在. ②,且的斜率不存在或,且的斜率不存在. 即是垂直的充要条件

4. 直线的交角:

⑴直线到的角方向角;直线到的角,是指直线绕交点依逆时针方向旋转到与重合时所转动的角,它的范围是,当时.

⑵两条相交直线与的夹角:两条相交直线与的夹角,是指由与相交所成的四个角中最小的正角,又称为和所成的角,它的取值范围是,当,则有.

5. 过两直线的交点的直线系方程为引数,不包括在内

湖南高考文科数学考点二:轨迹方程

一、求动点的轨迹方程的基本步骤

⒈建立适当的座标系,设出动点M的座标;

⒉写出点M的 *** ;

⒊列出方程=0;

⒋化简方程为最简形式;

⒌检验。

二、求动点的轨迹方程的常用方法:求轨迹方程的方法有多种,常用的有直译法、定义法、相关点法、引数法和交轨法等。

⒈直译法:直接将条件翻译成等式,整理化简后即得动点的轨迹方程,这种求轨迹方程的方法通常叫做直译法。

⒉定义法:如果能够确定动点的轨迹满足某种已知曲线的定义,则可利用曲线的定义写出方程,这种求轨迹方程的方法叫做定义法。

⒊相关点法:用动点Q的座标x,y表示相关点P的座标x0、y0,然后代入点P的座标x0,y0所满足的曲线方程,整理化简便得到动点Q轨迹方程,这种求轨迹方程的方法叫做相关点法。

⒋引数法:当动点座标x、y之间的直接关系难以找到时,往往先寻找x、y与某一变数t的关系,得再消去参变数t,得到方程,即为动点的轨迹方程,这种求轨迹方程的方法叫做引数法。

⒌交轨法:将两动曲线方程中的引数消去,得到不含引数的方程,即为两动曲线交点的轨迹方程,这种求轨迹方程的方法叫做交轨法。 青源高校名单网

湖南高考文科数学考点三:导数

一、函式的单调性

在a,b内可导函式fx,f′x在a,b任意子区间内都不恒等于0.

f′x≥0⇔fx在a,b上为增函式.

f′x≤0⇔fx在a,b上为减函式.

二、函式的极值

1、函式的极小值:

函式y=fx在点x=a的函式值fa比它在点x=a附近其它点的函式值都小,f′a=0,而且在点x=a附近的左侧f′x<0,右侧f′x>0,则点a叫做函式y=fx的极小值点,fa叫做函式y=fx的极小值.

2、函式的极大值:

函式y=fx在点x=b的函式值fb比它在点x=b附近的其他点的函式值都大,f′b=0,而且在点x=b附近的左侧f′x>0,右侧f′x<0,则点b叫做函式y=fx的极大值点,fb叫做函式y=fx的极大值.

极小值点,极大值点统称为极值点,极大值和极小值统称为极值.

三、函式的最值

1、在闭区间[a,b]上连续的函式fx在[a,b]上必有最大值与最小值.

2、若函式fx在[a,b]上单调递增,则fa为函式的最小值,fb为函式的最大值;若函式fx在[a,b]上单调递减,则fa为函式的最大值,fb为函式的最小值.

四、求可导函式单调区间的一般步骤和方法

1、确定函式fx的定义域;

2、求f′x,令f′x=0,求出它在定义域内的一切实数根;

3、把函式fx的间断点即fx的无定义点的横座标和上面的各实数根按由小到大的顺序排列起来,然后用这些点把函式fx的定义区间分成若干个小区间;

4、确定f′x在各个开区间内的符号,根据f′x的符号判定函式fx在每个相应小开区间内的增减性.

湖南高考文科数学考点四:不等式

1理解不等式的性质及其证明。

【导读】

不等式的性质是不等式的理论支撑,其基础性质源于数的大小比较。要注意以下几点:

加强化归意识,把比较大小问题转化为实数的运算;

通过复习强化不等式“运算”的条件。如a>b、才c>d在什么条件下才能推出ac>bd;

强化函式的性质在大小比较中的重要作用,加强知识间的联络;

不等式的性质是解、证不等式的基础,对任意两实数a、b有a-b>0 a>b,a-b=0 a=b,a-b<0 a

一定要在理解的基础上记准、记熟不等式的性质,并注意解题中灵活、准确地加以应用;

对两个或两个以上不等式同加或同乘时一定要注意不等式是否同向且大于零;

对于含参问题的大小比较要注意分类讨论。

2掌握两个不扩充套件到三个正数的算术平均数不小于它们的几何平均数的定理,并会简单的应用。

【导读】

1、在证明不等式的各种方法中,作差比较法是一种最基本最重要的方法,它是利用不等式两边的差是正数还是负数来证明不等式,其应用非常广泛,一定要熟练掌握。

2、对于公式a+b≥ 2√ab,ab≤a+b/22要理解它们的作用和使用条件及内在联络,两个公式也体现了ab和a+b的转化关系。

3、在应用均值定理求最值时,要把握定理成立的三个条件就是“一正——各项均为正;二定——积或和为定值;三项等——等号能否取得”。若忽略了某个条件,就会出现错误。

3掌握分析法、综合法、比较法证明的简单不等式。

【导读】

1、在证明不等式的过程中,分析法和综合法是不能分离的,如果使用综合法证明不等式难以入手时,常用分析法探索证题途径,之后用综合法的形式写出它的证明过程。有时问题证明难度较大,常使用分析综合法,实现两头往中间靠以达到证明目的。

2、由于高考试题不会出现单一的不等式的证明题,常常与函式、数列、三角、方程综合在一起,所以在学习中,不等式的证明除常用的三种方法外,还有其他方法,比如比较大小。证明不等式的常用方法有:差、商比较法、函式性质法、分析综合法和放缩法。要能了解常见的放缩途径,如:利用增或舍、分式性质、函式单调性、有界性、基本不等式及绝对值不等式性质和数学归纳法等。有时要先对不等式作等价变形再进行证明,有时几种证明方法综合使用。

3、比较法有两种形式:一是作差,而是作商。用作差法证明不等式是证明不等式中最基本、最常用的方法。它的依据是不等式的基本性质。步骤是:作差商→变形→判断。变形的目的是为了判断,若是作差,就判断与0的大小关系,为了便于判断,往往把形式变为积或完全平方式。若是作商,两边为正,就判断与1的大小关系。

湖南高考文科数学考点五:几何

1棱柱:

定义:有两个面互相平行,其余各面都是四边形,且每相邻两个四边形的公共边都互相平行,由这些面所围成的几何体。

分类:以底面多边形的边数作为分类的标准分为三棱柱、四棱柱、五棱柱等。

表示:用各顶点字母,如五棱柱或用对角线的端点字母,如五棱柱

几何特征:两底面是对应边平行的全等多边形;侧面、对角面都是平行四边形;侧棱平行且相等;平行于底面的截面是与底面全等的多边形。

2棱锥

定义:有一个面是多边形,其余各面都是有一个公共顶点的三角形,由这些面所围成的几何体

分类:以底面多边形的边数作为分类的标准分为三棱锥、四棱锥、五棱锥等

表示:用各顶点字母,如五棱锥

几何特征:侧面、对角面都是三角形;平行于底面的截面与底面相似,其相似比等于顶点到截面距离与高的比的平方。

3棱台:

定义:用一个平行于棱锥底面的平面去截棱锥,截面和底面之间的部分

分类:以底面多边形的边数作为分类的标准分为三棱态、四棱台、五棱台等

表示:用各顶点字母,如五棱台

几何特征:①上下底面是相似的平行多边形②侧面是梯形③侧棱交于原棱锥的顶点

4圆柱:

定义:以矩形的一边所在的直线为轴旋转,其余三边旋转所成的曲面所围成的几何体

几何特征:①底面是全等的圆;②母线与轴平行;③轴与底面圆的半径垂直;④侧面展开图是一个矩形。

5圆锥:

定义:以直角三角形的一条直角边为旋转轴,旋转一周所成的曲面所围成的几何体

几何特征:①底面是一个圆;②母线交于圆锥的顶点;③侧面展开图是一个扇形。

6圆台:

定义:用一个平行于圆锥底面的平面去截圆锥,截面和底面之间的部分

几何特征:①上下底面是两个圆;②侧面母线交于原圆锥的顶点;③侧面展开图是一个弓形。

7球体:

定义:以半圆的直径所在直线为旋转轴,半圆面旋转一周形成的几何体

几何特征:①球的截面是圆;②球面上任意一点到球心的距离等于半径。 看过"湖南高考数学知识点 湖南高考文科数学考点 "的还:

以上就是青源高校名单网小编为大家带来的内容了,想要了解更多相关信息,请关注青源高校名单网。

免责声明:文章内容来自网络,如有侵权请及时联系删除。
与“广东高职高考考什么?”相关推荐